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The responses of synapses in the neocortex show highly stochastic and nonlinear behavior. The microscopic
dynamics underlying this behavior, and its computational consequences during natural patterns of synaptic
input, are not explained by conventional macroscopic models of deterministic ensemble mean dynamics. Here,
we introduce the correlation entropy of the synaptic input-output map as a measure of synaptic reliability
which explicitly includes the microscopic dynamics. Applying this to experimental data, we find that cortical
synapses show a low-dimensional chaos driven by the natural input pattern.
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I. INTRODUCTION

The excitatory cortical synapse is an example of a nonlin-
ear biological system with a high level of intrinsic noise.
This leads to a complex relationship between the input—the
times of presynaptic action potentials �APs�—and the
output—the variable amplitudes of excitatory postsynaptic
potentials �EPSPs�. The underlying mechanisms of this dy-
namics are not well understood. However, cortical synaptic
transmission has been studied extensively by measuring the
ensemble mean responses to short stimulus trains. Such re-
sponses show short-term plasticity or activity-dependent
changes, both augmenting and depressing �1–5�, as do mea-
surements of field potentials, which represent the spatial av-
erage of EPSPs in a large population of synapses, all driven
with the same timing �6�.

Current models of the dynamics of short-term plasticity
are mean-field approximations �1–3�, systems of determinis-
tic differential equations describing the average flux of trans-
mitter between different functional pools. In this treatment,
the large synaptic noise around the ensemble mean of indi-
vidual responses is considered to be extrinsic to the underly-
ing dynamics of the synaptic response. In fact, though, it is
known that the trajectory of individual responses contains a
large amount of �at least short-term� predictability or deter-
minism which is lost by the averaging of responses. For ex-
ample, immediately following a failure to release transmitter
in response to a presynaptic spike, there is a greatly raised
probability of release at a closely subsequent spike, and vice
versa �e.g., Ref. �7��.

As a consequence, characterizing the input-output dynam-
ics of the synapse by the deterministic dynamics of the en-
semble mean does not capture the full predictability of the
synapse. From a neurobiological point of view, a useful goal
in understanding the operation of neural circuits is to esti-
mate the rate at which predictability is lost, or equivalently
the rate of production of new information by the dynamics of
individual synapses, during natural sequences of input. Our
aim here is to do this in a way which captures nonlinear
correlations in the fluctuations around ensemble mean re-

sponses, which embody much of the predictability of synap-
tic transmission. In addition, this will shed light on the dy-
namical nature of synaptic transmission. For example, do the
noise of the input and the intrinsic noise of the synapse result
in behavior like stochastic chaos �8�? In this study, we de-
scribe a general, nonlinear approach to this problem, using
the correlation entropy of the input-output map of the syn-
apse.

II. CORRELATION ENTROPY ESTIMATED FROM
INPUT-OUTPUT TIME SERIES

A sequence of synaptic responses to an arbitrarily timed
spike-train input may be thought of as a map from input-
output history to the amplitude of the next event,

hi � Ai+1, �1�

where

hi = �Ai
m;�ti

n�

= �Ai−m+1,Ai−m+2, . . . . . ,Ai,�ti−n+1,�ti−n+2, . . . . . �ti�
�2�

and m is the number of amplitude dimensions, n is the num-
ber of interspike interval dimensions in the history, A repre-
sents the amplitudes, and �t the intervals preceding each
response. Equivalently, hi�hi+1 defines the dynamics in an
input-output time delay space �see Refs. �9,10��.

The correlation entropy K2 is a lower bound for the
Kolmogorov-Sinai entropy of a dynamical system �11�,
which can be calculated from correlation sums. We extend
the definition given in Ref. �11� to this bivariate, input-output
process, distinguishing input �time intervals� and output �am-
plitude� dimensions. Let

� = ln
C�m,n,�,��

C�m + 1,n + 1,�,��
− ln

C�n,��
C�n + 1,��

. �3�

The first term is the correlation exponent for the joint input-
output process, while the second term is that for the input
process alone. Then the correlation entropy of the input-
output process
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K2 = lim
m,n→�

lim
�,�→0

lim
N→�

��m,n,�,�� , �4�

where N is the number of data points. The correlation sums
are given by

C�m,n,�,�� =
2

N�N − 1��i=1

N

�
j=i+1

N

��� − �Ai
m − A j

m��

���� − ��ti
n − �t j

n�� , �5�

C�n,�� =
2

N�N − 1��i=1

N

�
j=i+1

N

��� − ��ti
n − �t j

n�� , �6�

where � is the Heaviside step function, �¯� denotes the
maximum norm and � and � are the neighborhood extents in
amplitude and interval dimensions, respectively. K2 measures
the uncertainty per synaptic event in the postsynaptic poten-
tial from the entire dynamics of synaptic transmission while
subtracting the input uncertainty. It is useful to examine the
convergence behavior of �, the estimate of K2, as a function
of the output neighborhood size ���. As the neighborhood
shrinks, � for stochastic processes approaches infinity, or for
chaotic deterministic processes, a finite positive value
�12–14�. For small extrinsic noise, for example, it is in prin-
ciple possible to separate the entropy that is due to determin-
istic dynamics from the noise, and to estimate the noise level
as the neighborhood radius below which � starts to rise
sharply. We used a method that estimates � from the slopes
of the logarithmic distributions of diagonal lengths in recur-
rence plots �RP� �14�, rather than directly from Eqs. �5� and
�6�. The RP is a matrix representing similarity in local his-
tory between all pairs of embedding points in a time series
�Fig. 1�a��. This method is robust against slow nonstationar-
ity in the data �15�, and is also computationally efficient,
since it requires only one calculation of the distances be-
tween points at a low embedding dimension. As expected,
the distributions of diagonal lengths could be fitted very well
with an exponential, allowing unambiguous measurement of
the correlation exponents �Fig. 1�b��.

III. THE NOISE-DRIVEN LOGISTIC MAP

In this section we illustrate the method using the logistic
map perturbed with noise in each iteration. This is given by

xi+1 = �a�xi + �i��1 − xi − �i��mod 1. �7�

Here the noise values �n, drawn randomly from a Gaussian
distribution with a standard deviation 	�, correspond to the
input time series �ti above. Analogously the output time se-
ries is given by the set of xn, corresponding to the set of Ai.
First, we chose x0=0.7 and a=4, which produces a chaotic
process in the unperturbed case.

The profile of the convergence of � as �, the output
neighborhood radius, approaches zero is illustrated in Fig. 2,
at three different strengths of the driving noise 	�. Figure
2�a� shows the profile for the input-output correlation en-
tropy. When � approaches zero �in this case, �=9�10−5�,
i.e., when input dimensions are included in the trajectories
for the entropy estimation, � clearly converges to a plateau
value. In contrast, for �=�, i.e., when the input dimensions
are ignored and � is calculated conventionally from the xi
alone, convergence to a plateau is not apparent except at
almost zero perturbation amplitude �Fig. 2�b��, since it is
masked by the effect of the unknown input noise, which
causes � to rise as �→0 �see Ref. �14� for discussion�. Thus
using the input-output method can use process noise when it
is actually known, i.e., when it is input, to expose the low-
dimensional dynamics of the driven process. In a regime
which is periodic in the noise-free case �a=3, Fig. 2�c��, � is
greatly reduced. The residual value reflects the finite number
of embedding points used and decreases with increasing N.
Note however, the driving input noise samples parts of the
state space which are off the attractor, and in general, � is

(a) (b)

FIG. 1. Input-output recurrence plot of synaptic transmission
data. Stimulation parameters as in Fig. 3�b�, 3�d�, and 3�e�. �a�
Excerpt of a recurrence plot for neighborhood dimensions �
=0.35 mV, �=290 ms. Matrix elements �i , j� are colored black
when ���− �Ai−A j�����− ��ti−�t j��=1. m=n=2. �b� Cumulative
logarithmic histogram of diagonal lengths in a recurrence plot of a
complete time series �30 min�. The correlation exponent of the joint
input-output process is estimated from the slope of this plot �1.75�.

10
−2

10
−1

0

0.5

1

1.5

ε

µ

10
−3

10
−2

10
−1

0

0.5

1

1.5

ε

µ

10
−1

10
0

0

0.5

1

1.5

ε

µ

Input−Output

10
−1

10
0

0

0.5

1

1.5

ε

µ

Output only

a=4 a=4

a=3 a=3

(a)

(b)

(c)

(d)

FIG. 2. Input-output correlation entropy of the noise-driven lo-
gistic map �Eq. �7��. Time series consisted of 5000 points, and
results from 500 trials were averaged. Symbols denote various noise
levels relative to the standard deviation of the unperturbed map
	� /	up: �=0.5, �=0.25, �=0.01, m=n=6. x0=0.7, a=4 �a,b�
and a=3 �c,d�. �a� � as a function of � for �→0, �b� � as a function
of � estimated solely from the output time series ��→��. �c� As for
�a� but for a=3. �d� As for �b� but for a=3.
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not expected to be the same as that of the noise-free case. For
example, with driving noise, a nonlinear system can spend
large amounts of time near chaotic repellors in the phase
space �8�. In the synapse the unperturbed or unstimulated
dynamics is trivially a fixed point of amplitude zero.

IV. SYNAPTIC TRANSMISSION DATA

We carried out whole cell patch-clamp recordings in 21
pairs of synaptically connected layer 2 /3 pyramidal neurons
�Fig. 3�b��, using standard techniques �16,29�. The amplitude
of synaptic events showed a typical pattern of variability in
repeated responses to short bursts, and short-term depression
in the ensemble average �Fig. 3�a��. Next, presynaptic APs
were stimulated continuously for periods of 30 minutes, with
presynaptic spike timing determined by an inhomogeneous
Poisson process �17� the rate of which was modulated in
exponentially decaying bursts �peak amplitude Rp, time con-
stant 
b�, at times generated by a stationary Poisson process
of rate �b �Fig. 3�c��. Such a process is thought to model the
statistics of natural bursting synaptic input reasonably well,
and can have a coefficient of variation of interspike intervals
�CV�ISI�� greater than 1 �18�. Postsynaptic responses to this
stimulus train showed a high variability in amplitude, includ-
ing a large proportion of failures, as well as asynchronous
spontaneous events �Fig. 3�c��. Distributions of �t and A are
shown in �Figs. 3�d� and 3�e��. Over 30 minutes of continu-
ous stimulation at an average rate of 1.2 Hz, there is typi-
cally a small depressing trend in the average response ampli-
tude, referred to as long-term depression �19�.

A. Dispersion of future synaptic transmissions

First, we show evidence of nonlinear structure in the
highly variable input-output relationship of these synapses.

To do this we searched for histories hi with the most reliable
futures Ai+1 �see Eq. �2��. As a measure of the similarity
between two histories, we used the Euclidian distance be-
tween their history vectors after normalizing amplitude and
interspike interval dimensions. For each event of the time
series we computed Nk�hi�, the set of the k nearest neighbors
of hi �20�. The dispersion of the future output for a trajectory
hi can be characterized by 	i, the standard deviation of the
futures Nk�hi� and 	A the standard deviation of A. A simple
example of this analysis, which can be easily visualized, is to
distinguish which combinations of most recent interspike in-
terval and EPSP amplitude lead to small dispersions. The
results are presented in Fig. 4�a�. In the right-hand panel the
distribution of all points in this space is shown �the range of
the axes excludes failures�. Points are colored according to
their dispersions. Points with relatively reliable futures �low
dispersion� are colored lighter. It is striking that the ampli-
tude dimension of such points has a much tighter distribution
than that of all amplitudes �see histogram in the left-hand
panel�, and that values are clearly restricted to a few sharp
peaks. This pattern was seen in seven out of eight synapses
analyzed in this way. Shuffled surrogates �see Fig. 4�b��
never showed a similar pattern. Thus, within the complex
and variable response of the synapse, a subset of patterns are
transmitted with considerable precision. In this case for in-
tervals less than the vesicle replenishment time constant of
the synapse �3,21�, the amplitude of the preceding event has
a greater impact than the interval. The K2 entropy that we
have defined above gives a global characterization of disper-
sion over all histories of input-output.

B. Correlation entropy of synaptic data

Figure 5�a� shows a typical portrait of the dependence of
� on the neighborhood size, �. As �→0, � converges to a
constant plateau value �solid black line�. In surrogates where
the output values are randomly shuffled, to destroy all corre-
lations in the output, or shifted in time to destroy only the
correspondence between the input and output, while preserv-
ing the correlations within the input and output individually,
� continues to grow as �→0. Theoretically this should ap-
proach �, but is prevented from doing so by the large num-
ber of zeros �failures� in the amplitude distribution �Fig.
3�e��. The small difference between the two surrogates de-
scribed above indicates that there is little additional correla-
tion in the output which is independent from the input, i.e.,
the synapse is highly driven, in this case. Thus, a converging
value for � for small � is clearly identifiable in cortical syn-
apses, even for stochastic input patterns, and is a measure of
the uncertainty produced by synaptic transmission.

�, being a measure of the information rate of the input-
output dynamics of the synapse, should change when the
properties of the synapse are altered via long-term plasticity,
which is believed to underlie learning and memory. To test
this, we applied a presynaptic-postsynaptic paired stimulus
protocol �22,23�, in which presynaptic and postsynaptic APs
are repeatedly stimulated with a 10 ms delay between them
to allow coincident arrival of both at the synaptic terminal.
After this so-called spike-timing-dependent long-term poten-
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FIG. 3. Synaptic transmission at a cortical synapse. �a� Six con-
secutive postsynaptic responses �top� and ensemble mean response
�bottom, 50 responses� to the presynaptic stimulation pattern indi-
cated below. �b� Whole-cell recording in synaptically coupled pyra-
midal neurons of the rat cortex. �c� A segment of a continuous
recording showing evoked and spontaneous EPSPs �upper traces�
during naturalistic stimulation �APs in lower traces� with param-
eters Rp=30 Hz, �b=0.2 Hz, 
b=200 ms, average rate 1.2 Hz �see
text�. �d�, �e� Corresponding distributions of interspike intervals �e�
and postsynaptic EPSP amplitudes �e� for an experiment lasting
30 minutes.
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tiation, � showed a similar form to the control distribution,
but a clear shift to lower values in the low � limit �Fig. 5�b��.
In this sense, less uncertainty is being created by the synaptic
transmission for the same statistics of input, i.e., reliability of
transmission is enhanced for this stimulus process. Similar
findings were seen in five synaptic connections.

C. A biophysical model of short-term plasticity

To gain insight into possible underlying mechanisms, we
also carried out the same analysis on a stochastic biophysi-

cally based microscopic model of cortical synapses adapted
from Ref. �24�. In this model, which is consistent with a
mean-field deterministic model of short-term plasticity �1�,
the stochastic release and replenishment of a small pool of
transmitter vesicles �quanta� is simulated explicitly, with
Gaussian variability of vesicle amplitude. The synaptic con-
nection is composed of N release sites. At each site there
may be, at most, one vesicle available for release, and the
release from each of the sites is independent of the release
from all other sites. The dynamics is characterized by two
probabilistic processes, release and recovery. At the arrival of
a presynaptic spike at time t�s�, each site containing a vesicle
will release the vesicle with the same probability, Use �use of
synaptic efficacy�. Once a release occurs, the site can be
refilled �recovered� during a time interval �t with a probabil-
ity 1−e−�t/
rec, with 
rec as a recovery time constant. Both
processes can be described by a single differential equation,
which determines the ensemble probability, Pv, for a vesicle
to be available for release at any time t �24�,

dPv

dt
=

1 − Pv


rec
− UsePv��t − t�s�� . �8�

The iterative solution for a train of spikes arriving at one
release site is given by

Pv�ti+1
�s� � = Pv�ti

�s���1 − Use�e−�ti+1
�s� −ti

�s��/
rec + 1 − e−�ti+1
�s� −ti

�s��/
rec,

�9�

where ti
�s� is the ith spike time, and Pr�ti

�s��=UsePv�ti
�s�� de-

notes the probability of release for each release site at the
time of a spike ti

�s�.

FIG. 4. �Color online� Clustering of amplitudes of responses
with reliable futures. �a� The history vector was defined only by the
last interspike interval and last EPSP amplitude. Points are coded
according to the dispersion value �see text� as indicated on the right
using 50 nearest neighbors. Stimulus parameters were Rpeak

=30 Hz, 
b=200 ms �b=0.2 Hz, which amount to an average rate
of 1.2 Hz. �b� Control for �a� using a random permutation of the
amplitude time series.
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FIG. 5. Convergence of K2-entropy estimate � for synaptic data.
�a� A typical ���� relationship at a very small �=0.018 ms. A clear
convergence is seen as �→0. Stimulation parameters as in Fig. 1.
Total number of stimulation events in the time series was 2594. The
mean of 50 randomly shuffled controls is shown as a dashed line.
The standard deviation 	 of these controls was maximal for �→0,
	�0.18. Gray � denotes the mean of 50 surrogates with a large
shift between the amplitude and interspike interval time series �see
text�. A shift 10 minutes was randomly chosen, 	�0.43 �b�. ����
before and after induction of spike-timing dependent plasticity
�STDP�. Gray line denotes the data before the induction of STDP,
black solid line denotes after induction. The means of 50 randomly
shuffled controls are shown as corresponding dashed lines, 	
�0.44 before STDP and 	�0.43 after STDP. Stimulation param-

eters were R̄=30 Hz, �b=0.5 Hz 
b=400 ms, average rate 6 Hz.
The stimulation before and after STDP induction was identical,
with 3000 stimulation events.
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However, individual trajectories follow a different dy-
namics from the ensemble since at each spike time t�s� an
all-or-nothing stochastic decision is made on the availability
of a vesicle, and therefore the release probability set back to
zero if release occurs. Thus individual realizations follow an
abruptly changing, nonlinear stochastic map. Individual tra-
jectories were simulated as follows: for each individual re-
lease site, the times of the most recent transmitter release
�ti

�r�� are recursively defined for a given input time series of
spike times �ti

�s��,

ti+1
�r� = ti

�r� + �ti+1
�s� − ti

�r����ti+1
�s� − ti

�r� − 
i���Use − �i+1�
�10�

with the associated refilling intervals,


i+1 = �i�̃�ti+1
�r� − ti

�r�� + 
i��ti
�r� − ti+1

�r� � , �11�

where �i is a random number from an exponential distribu-
tion with a time constant 
rec �see Ref. �8��, �i a random
number from a uniform distribution in the interval �0;1�, and

��x� = �0, x � 0,

1, x � 0,
� �̃�x� = �0, x � 0,

1, x  0.
�

The postsynaptic response ai to a single vesicle release is
assumed not to be a constant value but randomly drawn from
a Gaussian distribution characterized by the coefficient of
variation of the quantal content CV�q�=	q /mq,

ai = �i	q + mq, �12�

where �i is a random number from Gaussian distribution with
mean 0 and a standard deviation of 1, and 	q is the standard
deviation and mq the mean of the quantal content. Negative
values for ai were rounded to zero. The final size of a
postsynaptic response Ai is the sum over all N release sites

Ai+1 = �
j=1

N

ai
j�̃�ti+1

�r�j − ti
�r�j� . �13�

In summary the model depends upon three stochastic pro-
cesses, the recovery time for vesicles 
i, the decision whether
to release ��Use−�i�, and the amount of transmitter released
ai.

This model was able to reproduce a convergence of ����
for physiologically realistic parameters �Fig. 6�a��, although
not as flat as the experimental data. When quantal variability
was reduced to very low values, steplike patterns were ob-
served in the ���� relationship, reflecting a reliable quantal
representation �i.e., number of quanta� of EPSP amplitude.
This indicates that the convergence of � for real data might
reflect deterministic predictability of quantal number. When
we analyzed the corresponding macroscopic or mean-field
model �1� with additive Gaussian noise of the same ampli-
tude as the average ensemble fluctuations, a very different
pattern of ���� was observed �Fig. 6�b��. Instead of conver-
gence at low �, � rose sharply to arbitrarily high values as
�→0. Thus the signature of this uncorrelated extrinsic noise

added to the mean-field dynamics is quite different again
from what is observed in the experimental data. The conver-
gence of � both in actual data and in the microscopic bio-
physical model, but not for the mean-field case with extrinsic
noise, implies that the intrinsic microscopic nature of synap-
tic transmission leads effectively to a state of low-
dimensional chaos.

Any classification of the nature of the dynamics in this
way as chaotic or stochastic, using real time series of finite
length, actually depends on the scale of � and � and the
length of data available �25�. In the nervous system, the
postsynaptic cell has a limited resolution for distinguishing
the amplitude �set by intrinsic channel gating noise� and tim-
ing �set by jitter in synaptic latencies� of individual synaptic
events. These resolution limits, or the effective granularity of
representation of amplitude and timing, will vary according
to the location of the synapse on the dendritic tree and the
state of activation of ion channels, which together determine
the spatial and temporal filtering of inputs. Thus, the scale or
�, � dependence, of the correlation entropy measure should
be meaningful physiologically in understanding the genera-
tion and flow of information in a neural circuit.

Previous work has characterized synaptic reliability using
very low frequency single pulse trials �e.g., Ref. �26�� or as
the ensemble responses to short bursts of APs �e.g., Refs.
�1,2,4,27,28��. In contrast, the correlation entropy K2 gives a
measure of the overall nonlinear predictability of the micro-
scopic input-output mapping of a synapse—driven by a par-
ticular, but arbitrary stimulus pattern, which can be calcu-
lated practically from synaptic data. It also has a simple
information-theoretical interpretation as the rate of informa-
tion or uncertainty production by a synapse. Therefore, it is a
natural measure for characterizing the dynamic reliability of
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FIG. 6. �a� Analysis of a biophysically based model of synaptic
transmission �24�, driven by the same stimulus timing as used in
Fig. 5�a�. The model parameters were Use=0.5, 
rec=800 ms, N
=5, the mean quantal size q=0.2 mV for all release sites, see Ref.
�24� for details. Graphs are shown for three different levels of vari-
ability of the quantal content. �b� Same analysis as in �a� but with a
logarithmic scale in � to demonstrate the divergence between the
macroscopic mean-field model with additional extrinsic Gaussian
noise �solid line� and the microscopic stochastic model �dotted
line�. The standard deviation of the Gaussian noise was estimated
from average ensemble fluctuations of 1000 surrogates of the sto-
chastic model �parameters as in �a��. The model parameters for the
deterministic model were chosen accordingly, Use=0.5, Ase=1,

rec=800 ms.
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a synapse during natural activity. Applying it to experimental
results suggests that the microscopic characteristics of trans-
mitter release and postsynaptic receptor kinetics, combined
with a complex natural-like input timing, lead to a stochastic
chaotic process at individual cortical synapses, at certain
scales of resolution.
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